Working Together for Usable Climate Change Impacts Models: Thoughts on Developing Metrics to Assess Interdisciplinary Environmental Research Efforts

Liz Allen, PhD Innovations in Collaborative Modeling June 2016

Columbia River Basin

Climate change will affect agriculture, forests, air and water quality, water supply, storm frequency

Comparative assessment of 3 teams

Collaborative system dynamics modeling; Basin-specific approaches Stakeholders help define researchable questions; Issue-based workshops

Stakeholder input on regional scenarios; Separate objectives

Continuum of approaches to stakeholder engagement

Product-oriented

Who are the key stakeholders?

What is **USABLE** science?

What should the role of universities be?

The "gap" between science & practice

STUDY PURPOSE:

Document evolving perceptions within interdisciplinary teams in order to Determine which approaches contribute to *usable* information for regional decisionmakers

RESEARCH METHODS

- Focus groups at workshops
- Detailed observational notes
- Multiple choice surveys
- Semi-structured interviews

INTERVIEWS WITH RESEARCHERS Summer 2011-Winter 2015

WISDM	BioEarth	REACCH	Total Individuals
	11		11
	4		4
4	L		4
	1		1
1			1
		4	4
9 co-PIs	20 co-PIs	8 co-PIs	25 co-PIs

FOUNDATIONAL CONCEPTS:

- In order to manage adaptively, decision-makers must be engaged in research
- Boundary organizations negotiate between cultures and norms
- Learning organizations create, retain and transfer knowledge

BOUNDARY SPANNING

MODELS AS BOUNDARY OBJECTS

INTERVIEW RESULTS: PERCEPTIONS AMONG BIOEARTH RESEARCHERS (2011)

a. What defines a successful outcome for the research project?

INTERVIEW RESULTS: BIOEARTH TEAM COLLECTIVE MENTAL MODEL (2015)

Lessons about Stakeholder Engagement

Roles for different groups of stakeholders

- Academic, government & industry are critical
- Varying opinions about NGOs

Expectations for how stakeholders will interact with models

- Mixed at outset
- Increasing emphasis on learning from partnerships

Most critical times for stakeholder engagement

- Early-phase increasingly valued
- Consistent mid- and final-year engagement

$5^{\rm th}$ year Outcomes across projects

WISDM	Bí Earth	REACCH Regional Approaches to Climate Change – PACIFIC NORTHWEST AGRICULTURE
Iterative process + small teams = stakeholder trust and buy-in	Diverse stakeholder input = lots of learning, limited actionability	Researcher- driven + extension traditions = mixed outcomes
Addressing communication barriers could help research integration	Tools to track progress and accountability could improve productivity	Clear roles and strategic communication could build trust

Design of Engagement

Management

Team

LESSONS ABOUT MODELS AS BOUNDARY OBJECTS

- Be flexible in responding to stakeholder priorities
- Navigate issues of domain, scale & key processes before engaging
- Understand decisionmaking contexts

"SMART" METRICS FOR RESEARCH PROCESS EVALUATION

Specific Measurable Attainable Realistic Time-bound RECOMMENDATIONS FOR STAKEHOLDER ENGAGEMENT EVALUATION METRICS

- 1. Diversity of input
- 2. Incorporation of stakeholder perspectives
- 3. Production of informational tools and resources
- 4. Learning among researchers
- 5. Learning among stakeholders and incorporation of science in decisions

ACTIONABLE SCIENCE DEMANDS EFFECTIVE BOUNDARY SPANNING

1. Invest in long term partnerships

2. Communicate about team vision & research goals

3. Integrate stakeholder input

4. Reward extension & engagement activities

THANK YOU!

Web resources: http://bioearth.wsu.edu/ http://csanr.wsu.edu http://agclimate.net

Contact:

Liz Allen, Research Associate, WSU Center for Sustaining Agriculture and Natural Resources lizb.allen@wsu.edu

This research was supported with funding from the USDA National Institutes for Food and Agriculture, grant number 2011-67003-30346.

United States Department of Agriculture National Institute of Food and Agriculture

SUPPLEMENTARY SLIDES

REFERENCES

Adger, W. N., Huq, S., Brown, K., Conway, D., & Hulme, M. (2003). Adaptation to climate change in the developing world. *Progress in development studies*, 3(3), 179-195.

Aldrich, H., & Herker, D. (1977). Boundary spanning roles and organization structure. Academy of management review, 2(2), 217-230.

Braun, Virginia; Victoria Clarke (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology* **3** (2): 83.

Collins, H., & Evans, R. (2008). *Rethinking expertise*. University of Chicago Press.

Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five approaches. Sage.

Guston, D. H. (2001). Boundary organizations in environmental policy and science: an introduction. Science, Technology, & Human Values, 26(4), 399-408.

Jones, N., Clark, J., & Tripidaki, G. (2012). Social risk assessment and social capital: A significant parameter for the formation of climate change policies. The Social Science Journal, 49(1), 33-41.

Kasperson, R. E. (2011). Characterizing the Science/Practice Gap. Integrating science and policy: vulnerability and resilience in global environmental change. Washington DC, USA, 4-20.

Kirchhoff, C. J., Lemos, M. C., & Dessai, S. (2013). Actionable knowledge for environmental decision making: broadening the usability of climate science. Annual Review of Environment and Resources, 38(1), 393.

Kvale, S., & Brinkmann, S. (2009). Interviews: Learning the craft of qualitative research interviewing. Sage.

McNie, E. C. (2007). Reconciling the supply of scientific information with user demands: an analysis of the problem and review of the literature. Environmental science & policy, 10(1), 17-38.

Parker, J., & Crona, B. (2012). On being all things to all people: Boundary organizations and the contemporary research university. Social Studies of Science, 42(2), 262-289.

Saldana, J. (2009). The Coding Manual for Qualitative Researchers. Thousand Oaks, California: Sage. Sarewitz, D., & Pielke, R. A. (2007). The neglected heart of science policy: reconciling supply of and demand for science. *environmental science* & policy, 10(1), 5-16.

Seidman, I. (2013). Interviewing as qualitative research: A guide for researchers in education and the social sciences. Teachers college press.

Vogel, C., Moser, S. C., Kasperson, R. E., & Dabelko, G. D. (2007). Linking vulnerability, adaptation, and resilience science to practice: Pathways, players, and partnerships. *Global environmental change*, *17*(3), 349-364. Wolcott, H. F. (1994). Transforming qualitative data: Description, analysis, and interpretation. Sage.

CORE TAKE AWAY LESSON:

Input from decision makers is key to informing the **assumptions** we build into models, scenarios we test and spatial scales and time horizons at which we provide outputs.

Adaptation of Bloom's Taxonomy with Examples related to stakeholder ENGAGEMENT

ľ		mplexity	Levels of Intellectual Behavior	Examples of Outcomes
			Knowledge	Name potential stakeholders, identify project goals
	exity		Comprehension	Articulate roles for stakeholders in research
	mple		Application	Formulate questions for stakeholders
	Cc		Analysis	Consider stakeholder recommendations, explore opportunities to inform decisions
			Evaluation	Assess engagement process
			Synthesis	Develop tools, evolve new research directions

THEORY U: ORGANIZATIONAL LEARNING

Co-Initiating
 Define challenge
 Build common intent
 Gather information

SIOW

down

2. Co-Sensing Convene a team Observe Explore **5. Co-evolving** Implement Scale-up

4. Co-creating Test solutions Prototype new ideas

Accelerate

3. Presencing Connect to source of inspiration Connect to deeper purpose See the whole

USEFUL-TO-USABLE PARADIGM SHIFT

Paradigm 1: Predict, Then Act Paradigm 2: Seek Robust Solutions

Best estimate of future, management plans & policies designed accordingly.

Asks, what is most likely to happen in the future?

Places unrealistic demands on modeling and climate science Vulnerabilities identified, make decisions that perform well across a range of futures.

Asks, what are possible unintended consequences of decisions?

> Accounts for complexity and uncertainty in earth systems & human behavior

> > (Weaver et al., 2013)

LESSONS ABOUT TEAM MANAGEMENT: ANIMAL MATRIX TYPES

CLASSIFICATION OF STAKEHOLDERS BASED ON INTEREST AND INFLUENCE

Influence

(*Reed et al., 2009*)

CLASSIFICATION OF ROLES FOR SCIENTISTS IN DECISION-MAKING

View of science in society

(Pielke, 2007)

OVERVIEW OF BIOEARTH'S ISSUE-BASED WORKSHOPS

Topic	Date	Location
Carbon and Nitrogen Management	February 2013	Seattle
Water Supply	February 2013	Seattle
Rangeland Management	February 2014	Richland
Atmospheric Issues	February 2014	Seattle
Forest Management	June 2014	Olympia
Water Quality	March 2015	Vancouver

BIOEARTH RESEARCHERS' COLLECTIVE MENTAL MODEL (2015)

DEFINING A USABLE CLIMATE SCIENCE VALUE CHAIN

FUTURE RESEARCH DIRECTIONS

- Design and evaluate educational tools for stakeholders
- Investigate impacts of training researchers in interdisciplinary team management
- Increase understanding of specific decisions stakeholders make and how climate impacts models might inform them
- Assess opportunities incentivize and support stakeholder engagement